Mining Frequent Patterns in Uncertain and Relational Data Streams using the Landmark Windows
نویسندگان
چکیده
Todays, in many modern applications, we search for frequent and repeating patterns in the analyzed data sets. In this search, we look for patterns that frequently appear in data set and mark them as frequent patterns to enable users to make decisions based on these discoveries. Most algorithms presented in the context of data stream mining and frequent pattern detection, work either on uncertain data, or use the sliding window model to assess data streams. Sliding window model uses a fixed-size window to only maintain the most recently inserted data and ignores all previous data (or those that are out of its window). Many realworld applications however require maintaining all inserted or obtained data. Therefore, the question arises that whether other window models can be used to find frequent patterns in dynamic streams of uncertain data. In this paper, we used landmark window model and time-fading model to answer that question. The method presented in the form of proposed algorithm, which uses the idea of landmark window model to find frequent patterns in the relational and uncertain data streams, shows a better performance in finding functional dependencies than other methods in this field. Another advantage of this method compared with other methods is that it shows tuples that do not follow a single dependency. This feature can be used to detect inconsistent data in a data set.
منابع مشابه
Mining Frequent Patterns in Uncertain and Relational Data Streams using the Landmark Windows
Todays, in many modern applications, we search for frequent and repeating patterns in the analyzed data sets. In this search, we look for patterns that frequently appear in data set and mark them as frequent patterns to enable users to make decisions based on these discoveries. Most algorithms presented in the context of data stream mining and frequent pattern detection, work either on uncertai...
متن کاملFMU: Fast Mining of Probabilistic Frequent Itemsets in Uncertain Data Streams
Discovering Probabilistic Frequent Itemsets (PFI) in uncertain data is very challenging since algorithms designed for deterministic data are not applicable in this context. The problem is even more difficult for uncertain data streams where massive frequent updates need be taken into account while respecting data stream constraints. In this paper, we propose FMU (Fast Mining of Uncertain data s...
متن کاملFrequent Pattern Mining from Time-Fading Streams of Uncertain Data
Nowadays, streams of data can be continuously generated by sensors in various real-life applications such as environment surveillance. Partially due to the inherited limitation of the sensors, data in these streams can be uncertain. To discover useful knowledge in the form of frequent patterns from streams of uncertain data, a few algorithms have been developed. They mostly use the sliding wind...
متن کاملSequential Pattern Mining for Uncertain Data Streams using Sequential Sketch
Uncertainty is inherent in data streams, and present new challenges to data streams mining. For continuous arriving and large size of data streams, modeling sequences of uncertain time series data streams require significantly more space. Therefore, it is important to construct compressed representation for storing uncertain time series data. Based on granules, sequential sketches are created t...
متن کاملA Sliding Window Algorithm for Relational Frequent Patterns Mining from Data Streams
Some challenges in frequent pattern mining from data streams are the drift of data distribution and the computational efficiency. In this work an additional challenge is considered: data streams describe complex objects modeled by multiple database relations. A multi-relational data mining algorithm is proposed to efficiently discover approximate relational frequent patterns over a sliding time...
متن کامل